Isomerism

EXERCISES

ELEMENTARY

Q. 1 (1)
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$

Total aldehydic form $=5$
Keto from $=3$
Total $=8$
Q. 2 (4)

Both have same molecular formula but different functional group.
Q. 3 (2)

Glucose and fructose have similar molecular formula with difference of functional group, so they are functional isomers
Q. 4 (3) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$ has three isomers.
(1)

(cis)
1,2-dibromoethene
(2)

1,2-dibromoethene
(3) $\mathrm{CH}_{2}=\mathrm{C}$
1,1-dibromoethene
Q. 5
(4)
Q. 6 (3)
$\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ are functional isomers.
Q. 7 (4)

1. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$
2. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\text { - }}{\stackrel{+}{\mathrm{O}} \mathrm{H}}-\mathrm{CH}_{3}$

Butan-2-ol
(Chiral compoud)

Q. 8 (1)

Both have same molecular formula and different alkyl groups attached to polyvalent functional group.
Q. 9 (1)
Q. 10 (2)
Q. 11 (1)

Non superimpossible mirror image -Enantiomers.
Q. 12 (1)

Q. 13 (3)

The configuration in which, OH group are on right side, H -atom are on left side, CHO group are on upper side \& $\mathrm{CH}_{2} \mathrm{OH}$ are on lower side found in fischer projection known as D -configuration.

(vi)

(ii) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(vii)

(iii)

(viii)

(iv)

(ix)

(x)

Q. 6 (1)

Anthracene

Only three types of hydrogen so only three structural isomers possible.
Q. $7 \quad$ (3)
Q. 8 (2)
Q. $9 \quad$ (2)
Q. 10 (1)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}$
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$
Q. $11 \quad$ (4)
Q. $13 \mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\mathrm{CH}_{2}-\mathrm{CH}_{3}}{\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \text { and }}$

Carbon skeleton is different in both compounds.
Q. 14

Amide functional group Aldehyde and 1° amine
Q. 15 (2)
Q. 16 (1)

Q. 17 (3)
Q. 18 (4)
Q. 19 (3)
Q. 20 (3)
(1)

(b)

Q. 21 (1)
Q. 12 (1)

Carbon skeleton is different in both compounds.
Q. 22 (3)

Exchanging groups across the horizontal bond and also across the vertical bond
Q. $23 \quad$ (3)
(II)

Q. 24 (3) Isopentene

Products are
(I)

(III)

(R)

Only (1) and (3) are optically active.
Q. 25 (2)

(i)

(ii)
(iii)
Q. $27 \quad$ (2)

A \rightarrow Planar compound so optically inactive.
B \rightarrow Non planar and optically active due to absence of POS \& COS.
C \rightarrow Non planar but having POS so, optically inactive.
D \rightarrow Planar compound.
Q. 28 (1)

Enantiomers
Q. 29 (2)

Q. $30 \quad$ (A)
Q. 31 (1)
Q. 32 (3)

Q. 33 (1)

Q. $34 \quad$ (2)
Q. 35 (4)

A and C are enantiomers
Q. 36 (2)

Q. $37 \quad$ (4)
Q. 38 (1)

Enantiomers
Q. 39 (1)

$1 \mathrm{~s}, 2 \mathrm{~s}$

Q. 40	(1) H OH		
		Q. 50	(4)
Q. 41	(3)	Q. 51	(4)
			$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{COOH}$ (Not give geometrical isomers)
		Q. 52	(4)
			Terminal carbon have same compound
Q. 42	C	Q. 53	(4)
Q. 43	(3)		$\mathrm{H}_{3} \mathrm{C}-\mathrm{HC}=\mathrm{C}^{\text {, } \mathrm{C}_{6} \mathrm{H}_{5}}$
	CH_{3}		This compound no geometrical isomers
	$\mathrm{H}-\mathrm{Br}$	Q. 54	(1)
	CH_{3}		$2^{\text {n }}$
Q. 44	(2)		$\Rightarrow \mathrm{n}=2 \Rightarrow$ (4)
		Q. 55	(4) 1,4-Butanedioic acid
Q. 45	(2)		(3)
		Q. 56	(3)
Q. 46	(1)		Restricted rotation about the double bond
	N	Q. 57	B
Q. 47	(3)		
		Q. 58	(4)
Q. 48		Q. 59	(3)
		Q. 60	(4)
Q. 49	(3)	Q. 61	(3)
	$\mathrm{A} \rightarrow \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ Show G.I.	Q. 62	(3)
		Q. 63	(2)
		Q. 64	(1)
		Q. 65	(3)
			Self explanatory.

Q. 66 (1)

Self explanatory.
Q. 67 (2)

$$
\text { Ethene } \rightarrow \mathrm{CH}_{2}=\mathrm{CH}_{2}
$$

Cannot show G.I.
Propene $\rightarrow \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
Cannot show G.I.
Butene $\rightarrow \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
Show G.I. and it also show positional isomerism.
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ and $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$.
Q. 68 (3)

Metamerism
Q. 69 (2)

1-Propanol (Molecuylar formula is not same)
Q. $70 \quad$ (1)

They will have identical physical properties
Q. $71 \quad$ (3)
optical isomers

Q. 72 (1)
Q. 73 (D)

Q. 74 (C)

Q. 75 (D)
(A)ccording to IUPAC only alkene and alkyne are unsaturated hydrocarbon.

JEE-ADVANCED
 OBJECTIVE QUESTIONS

Q. $1 \quad \mathrm{C}$

Q. 2 B

Q. 3 C

Q. 4 D

Identical compound
Q. 5
(B) 4

Q. 6 D

$$
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \longleftrightarrow \triangle
$$

Q. 7
Q. 8
(B)
Q. 9
(C)

(R)

(S)
Q. 10 (B)
Q. 11
(B)
(i)

(ii)

(iii)

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (C)
Q. 2 (D)
Q. 3 (A, B)
Q. 4 (B,C)
(A)

G.I.(B)

Show G.J.

Show G.I. due to ring contain 8-carbon.

No GI.
Q. 5 Optically active compound will be resolvable.

Resolution is a process by we separate entionmers and we know that entionmers are individually active so cheack POS and COS.

Q. 6 (B)

Check R/S configuration
Fischer is in eclipse form so first we have to convert above compound into total eclipsed form.

Q. 7 (A, C, D)
(A)

chiral carbon So optically active.
(B)

opically inactive
(C)

Does not contain POS or COS so optically active.

Does not contain POS or COS because both benzene rings are $\perp \mathrm{r}$ to each other.
Q. 8 (A,B,D)

Groups around the area which rotation has been restricted should be different.
Lone pair and isotopes also counts as a different groups.

Q. 11 (B) (C)

Two different group- H and $-\mathrm{CH}_{3}$ is present.
When two groups (Bulky) are at 60° Dihedral angle is known as sancle form

groups of carbon is same G.I. absent

Q. 9 (A, B, D)
(A)

Show G.I. $(\mathrm{a} \neq \mathrm{b})$
(B) Show G.I.
(C)

$\mathrm{a}=\mathrm{b}$ so not show G.I.
(D)

Show G.I.
(D)
Q. 10 (A) (D)

Check conformers of the compounds

Front side

Back side
Q. 17
(A)

($\mathrm{CD}_{2}=\mathrm{C}-\mathrm{Ph}$
Q. 18 (B)
(A)

(B)

same compound
(D)

(same compound)
 otation of from carbon

(B)
(C)

(C)

(D)

POS | P |
| :--- |
| COS |
| Active \boxtimes |

(B)
(D)

In structural isomerism Connectivity of atoms remains same.
In tautomerism atom must ossilate in the compound.
Geometrical isomerism is shown by many compounds like, alkene, cycloalkanes, oximes, etc.
Q. 13 (A)
(C)

POS or COS may be present
Meso are these compounds which was minimum 2chiral carbon or more and having POS or COS or both. For optical activity two necessary condition us compound must be asymmetric. It POS or COS present then it will super impose on its mirror image.
Q. 14 (B) (D) - Functional isomer
Q. 15 (A) (C) (D)

Single chiral carbon have two form dexlro totatory and laevorotatory.
Chiral carbon or Asymmetric carbon is always stereo centre.

Ether and alcohol are functional isomers.
Q. 16 (B) (C)

Q. 19 (A) II \& IV
(I)

Repulsion can be minimized Keto form is unstable due to repulsion between by rotation.
lone pairs.

Antiaromatic
Aromatic
When tautomerize enol is
When tautomerize enol is aromatic so IV preferes antiaromatic while
to be in enol form.

Comprehension \# 02 (Q. No. 20 \& 21)
Q. 20 C
Q. 21 D Infinite

Comprehension \# 03 (Q. No. 22 to 24)
Q. 22 (D) None of these

Specific rotation of (-) MSG
$\mathrm{C}=\frac{169 \mathrm{gm}}{845 \mathrm{ml}} \quad l=2 \mathrm{dm}$
$\left[\theta^{\circ}\right]=\frac{\theta}{\mathrm{C} l}=\frac{9.6}{169 / 845 \times 2}=-24^{\circ}$
Q. 23 (C) 91.6%

Optical of purity (-) MSG $=\frac{\theta_{\text {Observed }}}{\theta_{\text {Standard }}} \times 100=$
83.33 \%

RM $=100-$ optical of purity $=100-83.33=16.66 \%$

| $(-)$ MSG total in mixture $\Rightarrow \begin{array}{r}83.33 \% \\ + \\ \hline\end{array}$ |
| ---: | :--- |
| 91.33% |

Optical purity in mixture (+) MSG $=16.9 \mathrm{gm}$ in 507 ml solution
$\mathrm{C}=\frac{16.9}{507} \mathrm{gm} / \mathrm{ml} \quad l=4 \mathrm{dm}$
$\theta_{\text {Observed }}=\left[\theta^{\circ}\right] \times$ C.l. $=24 \times \frac{16.9}{507} \times 4=+3.2^{\circ}$
Q. 25 (B)
Q. 26
(C) C

Q. 27 (A)

$\mathrm{C} \equiv \mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$
$\mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}-\mathrm{C}$

Q. 28 (A) P , (B) R , (C) Q , (D) R
Q. 29 ($\mathrm{A} \rightarrow \mathrm{p}, \mathrm{s}) ;(\mathrm{B} \rightarrow \mathrm{q}, \mathrm{s}, \mathrm{t}) ;(\mathrm{C} \rightarrow \mathrm{r}, \mathrm{s}, \mathrm{t}) ;(\mathrm{D} \rightarrow \mathrm{q}, \mathrm{s}, \mathrm{t})$
Q. $30 \quad(\mathrm{~A} \rightarrow \mathrm{q}) ;(\mathrm{B} \rightarrow \mathrm{q}) ;(\mathrm{C} \rightarrow \mathrm{q}) ;(\mathrm{D} \rightarrow \mathrm{p}) ;(\mathrm{E} \rightarrow \mathrm{t})$
(A)

(B)

(C) (i)

(ii)

(iii)

(D) (i)

(ii)

(iii)

(iv)

(v)

Q. $24(\mathrm{C})+3.2^{\circ}$

$$
\begin{aligned}
& (+) \mathrm{MSG} \Rightarrow 33.8 \mathrm{gm} \text { in } 338 \mathrm{ml} \\
& (-) \mathrm{MSG} \Rightarrow 16.9 \mathrm{gm} \mathrm{in} 169 \mathrm{ml}
\end{aligned}
$$

Q. 31 (A) R , (B) P, (C) Q
Q. 32 (a-4-iii) ; (b-3-iv) ; (c-2-ii) ; (d-1-i)
Q. $33 \mathrm{~A} \rightarrow 2, \mathrm{~B} \rightarrow 7, \mathrm{C} \rightarrow 1, \mathrm{D} \rightarrow 6, \mathrm{E} \rightarrow 4, \mathrm{~F} \rightarrow 3, \mathrm{G} \rightarrow 2$,
Q. $34 \quad(\mathrm{~A} \rightarrow \mathrm{p}, \mathrm{s}) ;(\mathrm{B} \rightarrow \mathrm{q}, \mathrm{s}, \mathrm{t}) ;(\mathrm{C} \rightarrow \mathrm{r}, \mathrm{s}, \mathrm{t}) ;(\mathrm{D} \rightarrow \mathrm{q}, \mathrm{s}, \mathrm{t})$

NUMERICAL VALUE BASED

Q. 1 [4]

1,2-(B,N);1,3-(B,B);1,4-(B-N) and 1,3-(N,N)
Q. 2 [4]
Q. 3 [2]
Q. 4 [5]
Q. 5 [2]

Only one chiral C hence only 2 optical isomer.
Q. 6 [3]

In structure (I) , two methyl groups are equatorial In structure (II), two axial hydroxyl group forms hydrogen bonding.
Q. 77

One such compound is

Q. 8 [3]

Q. 9 [4]

Q. 10 [7]

Q. 11 [5]

Q. 12 [4]
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\underset{\mathrm{CH}_{3}}{\mathrm{CH}}-\mathrm{NH}_{2}$,

Q. 13 [5]

Q. 14 [6]

Q. 15 [4]
(1)

(2)

(3)

(4)

So, total number of possible cyclic isomers in $\mathrm{C}_{4} \mathrm{H}_{6}$ $=4$
Q. 16

Q. 17 [6]

Q. 18 [2]

(One chiral carbon)

KVPY

PREVIOUS YEAR'S
ISOMERISM
Q. 1 (C)

Possible structural isomers are nine.

Q. 2 Bonus

Incorrect question
The statement optically active (s) $-\alpha$ - methoxy acetaldehyde is incorrect.

Enantionmers Formed because cyclohexa diene shows optical activity.
Q. 4 (C)
Q. 5 (D)

Q. 6 (B)
$\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
3 Ether isomers

Q. 7 (B)

 2.methoxy propane

Ethoxy Ethane
(B)

This molecule contain 1 chiral centre and molecule having one chiral carbon do not have any type of symmetry so it is optically active

Non superimposable on mirror image
Q. 9 (C)

Racemic mixture (Enantiomer) pair
Q. 10 (C)

$\mathrm{n}=2$ [No. of stereogenic area]
Total stereoisomer $=2^{\text {n }}$
[When symm. is/are absent]
Total stereo isomer $=2^{2}=4$

Q. 11 (D)

This show E / Z isomerism
Q. 12 (D)

No. of S. $I=2^{n}=2^{2}=4$
cis - R
trans-R
cis - S
trans-S
Q. 13 (C)
(X)

Here the * marked carbon is Chiral, as it has 4 different groups attached.
(Y)

Here the * marked carbon is achiral, as it has two identical ethyl group attached.
Q. 14 (D)

Both x and y represent meso-2,3-dichlorobutanc. They are conformers, where X is eclipsed and Y is anti from.
Q. 15 (B)
$\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \quad \mathrm{C}-\mathrm{CH}_{3}$ (But-2-ene), $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ (But-1-ene),
Q. 16 (A)
(I)

C.O.S. is present so inactive
(II)

C.O.S. $\rightarrow X$
P.O.S. \rightarrow X
A.A.O.S. \rightarrow X
so active
(III) P.O.S. is present so inactive
(IV) C.O.S. and P.O.S. both are not present so active
(V) C.O.S. and P.O.S. both are not present so active

Q. 17 (D)

(S)

(R)

Q. 18 (D)

Compound I is alkyne and compound II is alkadiene, so they are functional isomers.

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (4)
$\mathrm{X}_{3} \mathrm{H}_{6} \mathrm{O} \Rightarrow \mathrm{XH}_{3} \square \mathrm{XH}_{2} \square \mathrm{XH}=\mathrm{O}$
$\& \quad \mathrm{CH}_{3}-\mathrm{C}_{\|}^{\mathrm{C}}-\mathrm{CH}_{3}$
Т $\eta \varepsilon \psi \alpha \rho \varepsilon \phi \cup v \chi \tau \imath \sigma \alpha \lambda \gamma \rho \circ \cup \pi \imath \imath \circ \mu \varepsilon \rho \imath \sigma \mu$.
Q. 2 (4)
Q. 3 (6)
Q. 4 (60)
Q. 5 (4)
Q. 6 (4)

More stable less potential energy.
Stability order : I > III > IV > II
So
Potential energy : II > IV > III > I

JEE-ADVANCED
 PREVIOUS YEAR'S

Q. 1 (B,C)

In option (B) \& (C) All atom are in out plane
Q. 2 (B)

Q. 3

$\mathrm{CH}_{3} \xrightarrow{\text { Ozonolysis }} \mathrm{CH}_{3}-\mathrm{CH}=0$

$$
+0=\mathrm{CH}-\frac{\stackrel{\mathrm{C}}{\frac{\mathrm{C}}{\mathrm{E}}}_{\mathrm{C}}^{\mathrm{H}}}{\mathrm{CH}}-\mathrm{CH}=0
$$

Products are optically inactive.
Q. 4 (BC)

At room temperature compound B and C are unstable because both of the

Compound are anti aromatic
Q. 5 (A,B,C)

Q. 6 (A,C,D)
Q. 7 (3)
Q. 8 (10.00)

(1)

(2)

(1)
Q. 9 (C)
P.

2, 3, 3-trimethyl pentan-2-ol
Q.

3-ethyl-2-methyl pentan-2-ol
R.

3-ethyl-2-methyl pentan-2-ol

3-ethyl-2-methyl pentan-3-
ol
Q. 10 (C)

D-Erythrose

Compound P
It is Identical $\mathrm{P}-2$

Compound Q

Compound R

It is Diastereomer $\begin{array}{r}\mathrm{Q}-1 \\ \mathrm{R}-1\end{array}$

Compound S
 It is Enantiomer S-3

Ans. P-2, Q-1, R-1, S-3

Q. 11 (B)

Q. 12 C, D

$$
[\alpha]_{D}=52.7^{\circ}
$$

The enantiomer of P has rotation -52.7° is as follows

dil. $\mathrm{HNO}_{3} \uparrow$

(C)

(D)

Hydrocarbons

EXERCISES

ELEMENTARY

Q. 1 (4)

 $\mathrm{C}_{7} \mathrm{H}_{16} \quad\left(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}\right)$Q. 2 (1)
Q. 3 (4)
$2 \mathrm{CH}_{3} \mathrm{COONa}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Electrolysis }}$
$\mathrm{CH}_{3}-\mathrm{CH}_{3}+2 \mathrm{CO}_{2}+2 \mathrm{NaOH}+\mathrm{H}_{2}$
Q. 4 (3)
Q. 5 (4)

In gemdihalide both the halogen atoms are present on the same carbon atom while in vicdihalide both the halogen atoms are present on adjacent carbon atoms.

vic-dihalide
Q. 6 (2)
Q. 7 (2)
$\underset{\substack{\text { l } \\ \mathrm{CH}_{3}}}{\mathrm{H} \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}+\mathrm{Br}_{2} \longrightarrow}$

Q. 8 (4)

Alkene gives anti addition reactions with bromine trans alkane gives meso in tramaddition.
Q. 9 (4)
(4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}+$ alc. $\mathrm{KOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{KI}+\mathrm{H}_{2} \mathrm{O}$
Q. 10 (2)
Q. 11 (3)
(3)

$\mathrm{R}-\mathrm{CH}=\mathrm{CH}-\mathrm{R} \xrightarrow[\text { heat }]{\text { Conc. } \mathrm{KMnO}_{4}} \mathrm{R}-\mathrm{COOH}+\mathrm{R}-\mathrm{COOH}$
Q. 12 (2)
(2)

Q. 13 (2)

Q. 14 (1)
(1) $\stackrel{\mathrm{sp}^{2}}{\mathrm{C}} \mathrm{H}_{2}=\stackrel{\mathrm{sp}^{2}}{\mathrm{C}} \mathrm{H}-\stackrel{\mathrm{sp}}{\mathrm{C}} \equiv \stackrel{\mathrm{sp}}{\mathrm{C}} \mathrm{H}$

Q. 15 (2)

(2) Markownikoff's rule can not be applied for symmetrical alkene.
Q. 16 (1)
(1) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}+\mathrm{C}_{6} \mathrm{H}_{6}$

$$
\xrightarrow{\text { anhy. } \mathrm{AlCl}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CH}_{3}
$$

Q. 17 (4)

Q. 18 (1)
(1) $3 \mathrm{CH} \equiv \mathrm{CH} \xrightarrow[\text { Fetube }]{\text { Red hot }} \underbrace{\text { Cond }}_{\text {Benzene }}$
Q. 19 (1)
Q. 20 (1)
(1) $H C \equiv C H$ one sigma and two π bond
Q. 21 (3)
(3) $\mathrm{Mg}_{2} \mathrm{C}_{3}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}+2 \mathrm{Mg}(\mathrm{OH})_{2}$
Q. 22 (2)
$\mathrm{CH} \equiv \mathrm{CH} \quad$ Hydrogen connected to carbon in sp hybridization is acidic Hydrogen.
$\mathrm{CH}_{2}=\mathrm{CH}_{2} \quad$ less acidic.
So order will be $\rightarrow \mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{2} \equiv \mathrm{CH}_{2}>\mathrm{CH}_{3}-$ CH_{3}.
Q. 23 (1)

JEE-MAIN
OBJECTIVE QUESTIONS
Q. $1 \quad$ (2)

Q. 2 (1)

Mech

Q. 3 (3)

Q. $4 \quad$ (2)

Q. $5 \quad$ (1)

Mech

Q. 6 (3)

- $\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}$

Q. 7
(3)
$\underset{\substack{\mathrm{CH}_{3}}}{\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CH}_{3} \xrightarrow{\mathrm{Cl}_{2} / \mathrm{hv}} \underset{\mathrm{F} . \mathrm{R} . \mathrm{S}}{\longrightarrow} \mathrm{CH}_{3}-\underset{\substack{\mathrm{CH} \\ \mathrm{CH}_{3}}}{\mathrm{CH}_{2}}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}}$
$+$

$+$

$+$

$+$

Total no of monochloro product $=8$
Q. 8 (4)

Q. 9 (4)

Q. 10 (3)

Q. 11 (3)

Q. 12 (2)

Q. 13 (4)

Q. 14 (3)

Reactivity of Alkyl Halide for Wurtz Rxn $\mathrm{R}-\mathrm{I}>\mathrm{R}-\mathrm{Br}>\mathrm{R}-\mathrm{Cl}>\mathrm{R}-\mathrm{F}$
Q. 15 (4)

Q. 16 (2)

Q. 17 (1)

(II)

$\downarrow \mathrm{Br}_{2} / \mathrm{hv}$
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Br}$

(III)

[Most stable free radical is formed as intermidiate] Order of Bromination $\quad=\mathrm{I}>$ III $>$ II $>$

Q. 18 (4)

Q. 19 (1)
in Kolbe's eledrolysis process. $\mathrm{NaOH} / \mathrm{KOH}$ is Formed at cathod so PH increases and PO^{H} decrease
At cathod $=\mathrm{Na}^{\oplus}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NaOH}+1 / 2 \mathrm{H}_{2}(\mathrm{~g})$

Q. 20 (1)

$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{(\mathrm{NaOH}+\mathrm{CaO})} \mathrm{CH}_{3} \mathrm{CoO} \stackrel{\ominus}{\mathrm{Na}} \stackrel{\oplus}{\text { R.D.S }\left(\mathrm{r}_{1}\right)} \mathrm{CH}_{3}^{\ominus}+\mathrm{CO}_{2}$
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH} \xrightarrow{(\mathrm{NaOH}+\mathrm{CaO})} \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CoO}^{\ominus} \mathrm{Na} \stackrel{\Delta}{\text { R.D.S }\left(\mathrm{r}_{2}\right)} \mathrm{CH}_{3}+\mathrm{CH}_{2}^{\ominus}+\mathrm{CO}_{2}$

[rater of decorboxylation \propto stability of corbanion] rate of decorboxylation $=r_{1}>r_{2}>r_{3}$
Q. 21 (1)

Q. 22 (1)
 $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S} \quad \Delta \mathrm{G}=\Theta$ ve For forword Rxn
$\Delta H=\oplus$ ve $\Delta S=\oplus v e$
Q. 23 (B)

Q. 24 (B)
(i)

(ii)

Reaction 3

Reaction 4

Q. 25 (1)

Stability depends on hyperconjugation which further depends on total number of $\alpha \mathrm{H}$.

Q. 26 (3)

Dipole moment is a vector quantity.In trans 1,2Dichloroethene ,all the vector cancell each other

Q. 27 (4)

Heat of hydrogenation α
$\frac{1}{\text { Stability of alkene or crowding across } \pi \text { bond }}$
Q. 28 (4)

Stability depends on hyperconjugation which further depends on total number of $\alpha \mathrm{H}$.

Q. 29 (3)

Electron releasing group and stability of carbocation will decide rate of reaction in electrophilic addition reaction.
Q. 30 (3)

Electron releasing group and stability of carbocation will decide rate of reaction in electrophilic addition reaction.
Q. 31 (1)

Electron releasing group and stability of carbocation will decide rate of reaction in electrophilic addition reaction.
Q. 32 (4)

No rearrangement in oxymercuration Demercuration.
Q. 33 (1)
(1)
 Cl

(3)

Q. 34 (2)

In anti addition, cis reactant will give enantiomers.
Q. 35 (2)

Q. 36 (2)
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$ (Free radical substitution reaction)
Q. 37 (2)

Q. 38 (3)

Conceptual
Q. 39 (1)
$\underset{\substack{\mathrm{Br}}}{\mathrm{CH}}=\mathrm{CH}$ has more strain due to sp^{2} hydridised carbon.
Q. 40 (4)

Q. 41 (1)

Q. 42 (1)
Q. 43 (1)

Q. 44 (2)

When double bond and triple bond is in the conjugation then triple bond is more reactive due to more stable carbocation.
 more stable
Q. 45 (2)
Q. 46 (1)

$2 \mathrm{CH}_{3} \mathrm{COOH}$
Q. 47 (3)

Q. 48 (1)

Q. 49 (2)

Syn addition with Baeyer's Reagent, So cis will form meso compound however peroxy acid in anti addition gives enantiomer.
Q. 50 (2)

Q. 51 (2)

$$
\begin{aligned}
& \mathrm{C}_{n} \mathrm{H}_{2 \mathrm{n}+2}+\frac{3 \mathrm{n}+1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{nCO}_{2}+(\mathrm{n}+1) \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+\frac{3 \times 3+1}{2} \mathrm{O}_{2} \longrightarrow 3 \mathrm{Co}_{2}+4 \mathrm{H}_{2} \mathrm{O} \\
& 1 \text { Mole } 5 \text { Mole } \quad 3 \text { Mole } 4 \text { Mole }
\end{aligned}
$$

Q. 52 (1)

(But -2-yne)
Q. 53 (3)

Q. 54 (4)

Q. 55 (3)
sp Hybridisation of alkyne and also intermediate form is less stable.
Q. 56 (1)

$$
\mathrm{CaC}_{2}+\mathrm{H}_{3} \mathrm{O}^{+} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2} \text { (Acetylene) }
$$

Q. 57 (2)

Conceptual
JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (D)

Q. 2 (D)

Q. 3 (A)

$\mathrm{HO}-\mathrm{O}-\mathrm{H} \xrightarrow{h \nu} 2 \mathrm{HO}^{\circ}$

$$
\mathrm{HO}^{\ominus}+\mathrm{HBr} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Br}^{\ominus}
$$

Q. 4 (C)

Q. 5 (D)

Q. 6 (B)

Anode :

$\mathrm{H}^{\circ}+\mathrm{H}^{\circ} \longrightarrow \mathrm{H}_{2}(\mathrm{~g})$

Cathod :

$$
\begin{aligned}
& \mathrm{H}^{\oplus}+\mathrm{e}^{\ominus} \longrightarrow 1 / 2 \mathrm{H}_{2}(\mathrm{~g}) \\
& \mathrm{Na}^{\oplus}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NaOH}
\end{aligned}
$$

Q7 (B)

Q. 8 (A)

Rate of Hydrogenation \propto
$\frac{1}{\text { crowding across } \pi \text { bond }}$
(Hydrogenation follow syn addition)
(A)

(D)

Q. 11 (C)

Q. 12 (C)

Q. 13 (C)
$\mathrm{X}=$ Hydrobroation oxidation, $\mathrm{Y}=$ oxymercuration \& demercuration, $\mathrm{Z}=$ Simple hydration reaction
Q. 14 (B)

$\xrightarrow{\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}^{-}} \mathrm{CH}_{\mathrm{D}} \mathrm{CHCH}_{2} \mathrm{OH}$
Q. 15 (B)

In anti addition, cis reactant will give enantiomers.
Q. 16 (C)

$$
\begin{aligned}
& \text { Trans }+\mathrm{Br}_{2} \longrightarrow \text { Meso } \\
& \text { Cis }+\mathrm{Br}_{2} \longrightarrow \mathrm{~d}+1 \text { (enantiomer) }
\end{aligned}
$$

Q. 17 (D)

Q.18(B)

Q. 19 (B)

Q. 20 (A)

In the presence of peroxide, HBr undergoes free radical addition and HCl undergoes electrophilic addition.
Q. 21 (B)

After addition of HBr , we get two chiral centres, so total isomers will be four.
Q. 22 (A)

Q. 23 (A)

 (P)

Q. 24 (C)

Since cis form in syn addition gives only one steresisomer i.e. meso \therefore it is 100 percent stereoselective and 100 percent stereoselective reaction is also called stereospecific reaction.
Q. 25 (B)

Q. 26 (B)

(C)

Q. 28 (C)

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{CH}_{3}+$

Q. 29 (A)

Alkene $\xrightarrow[(2) \mathrm{Zn}+\mathrm{H}_{2} \mathrm{O}]{(1) \mathrm{O}_{3}} \mathrm{CH}_{3} \mathrm{CHO}$ only

Q. 30 (A)

Q. 31 (D)

Q. 32 (A)

Q. 33 (D)

Q. 34 (D)

Q. 35 (B)

Q. 36 (A)

Q. 37 (C)
Q. 38 (C)

Q. 39 (B)

Q. 40 (C)

Q. 41 (A)

Q. 42 (D)

Q. 43 (D)

Q. 44 (D)

Q. 46 (B)
(A)

(B)

 $+\mathrm{HCOOH}$
(D)

Q. 47 (A)

Q. 48 (C)

Q. 49 (A)

Q. 50 (C)

Q. 51 (D)

Q. 52
(A)

Q. 53 (B)

Q. 54 (A)

(A, B are positional isomers)
Q. 55
(C)

Q. 56 (B)

$\downarrow \mathrm{Br}^{\text {® }}$

Q. 57 (C)

(A)

(B)

(C)

(D)

Q. 58 (B)

Q. 59 (B)

Q. 60 (D)

Q. 61 (A)

Always unsymmetrical Alkene react with $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$ and gives Racemic Mixture.
Q. 67 (C)
Q. 62 (A)

Q. 63 (C)

Shape of carbo cation \longrightarrow (Trigonal planner) as intermidiate
Q. 68 (B)
Q. 65 (C)

Q. 66 (C)

Diastereomers

Q.69(C)

Q. 70 (A)

$\mathrm{C} \equiv \mathrm{CH}$
Q. 71 (A)
NaNH_{2} is dehydrohalogenating agent (removes $\mathrm{HBr})$
Q. 72 (D)

Since base is bulky, we get Hoffmann's product as a major product
Q. 73 (D)

$\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow{\text { Basic medium }}$

Non terminal alkyne
Terminal alkyne
Q. 74 (C)

Q. 75 (A)

(A)

(C)
Q. 76 (A)

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow{(2) \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}^{-}} \mathrm{OH} \mathrm{OH} \\
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH} \\
\sqrt{\text { (1) } \mathrm{BH}^{2}-\mathrm{TH}} \text { Tautomerisation } \\
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CHO}
\end{gathered}
$$

Q. 77 (C)

Q. 78 (A)
(I) $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{CH}_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{2}=\underset{\text { I }}{\mathrm{C}}-\mathrm{CH}_{3}$

(II) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow[\mathrm{HgSO}_{4}]{\mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CH}_{3}-\underset{\mathrm{OH}}{\mathrm{C}}=\mathrm{CH}_{2}$

(III) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow[\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH}^{-}]{\mathrm{BH}_{3} \cdot \mathrm{TH}} \mathrm{CH}_{3}-\mathrm{CH}=\underset{\substack{\mathrm{O} \\ \mathrm{OH}}}{\mathrm{CH}}$

Q. 79 (C)

Q. 80 (B)

Q. 81 (C) (de) -2, 3 -dibromo

 (Meso)
Q.82(C)

Q. 83 (A)
$\mathrm{CH}_{3}-$

$$
\downarrow \mathrm{NH}_{2}-\mathrm{H}
$$

Q. 84 (A)

(Oxidative ozonolysis)
Q. 85 (C)

Q. 86 (A)

Q. 87 (B)

Q. 88 (B)

Q. 89 (D)

more collision probablity having triple bond than double bond. Reactivity order of catalytic hydrogenation $c>a>b$
Q. 90 (B)
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ Reactivity toward E.A.R b>a
Q. 91 (D)

Q. 92 (D)

Q. 93 (B)

Q. 94 (B)

Tran-2-butene
Q. 95 (A)

Q. 96

Q. 97
(B)

Correct reactivity order towards photochemical chlorination depend upon reactivity of hydrogen. reactivity of hydrogen $=3^{\circ} \mathrm{H}>2^{\circ} \mathrm{H}>1^{\circ} \mathrm{H}$
Q. 98 (B)

All optically inactive products
Q. 100 (C)
(A)

(B)

(C)

(D)

Q. 101 (D)

Red colour
(A)
(B)
(C)
Q. 102 (A)

Q. 103 (D)
Q. 104 (C)

Q. 105 (B)

Syn addition with Baeyer's Reagent, So cis will form meso compound however peroxy acid in anti addition gives enantiomer.
Q. 106 (D)

Syn addition of H_{2} on double bond and racemic mixture obtained
Q. 107 (A)

It is birch reduction
Q. 108 (B)

I

III
Q. 109 (B)

It is birch reduction.
Q. 110 (B)

Reduction with Wilkinson's catalyst is homogeneous
Q. 111 (D)

$\xrightarrow{\mathrm{Na} / \mathrm{NH}_{3}(\ell)}$

Q. 3 (ACD)

Q. 4 (ABC)
(i)

(ii)

(iv)

Q. 5 (ABCD)
(A) and (B) product of dehydrohalogenation.
(C) Product of dehalogenation.
(D) Kolbe's Electrolysis process.
Q. 6 (ABC)

X is Birch Reducing agent and Y is lindlar's cotalyst.
Q. 7 (ACD)
$\mathrm{A}, \mathrm{C}, \mathrm{D}$ gives alkenes by cyclic T.S. on heating.
Q. 8 (ABC)
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ will undergo free radical subsitution reaction however D will perform free radical addition reaction. (ABCD)
(A)

H_{2} Ö:
(B), (C) and (D) also depends on stability of carbocation.
Q. 10 (AC)

Q. 11 (ABC)
(A) when H^{+}add to the Buta-1, 3-diene in the r.d.s., an allylic carbocation is formed, however from But-1ene, an 2° carbocation will form which will be less stable.
(B) At room temperature, product will be TCP.
(C)

(carbocation as more stable)
Q. 12 (ABC)

See mechanism of ozonolysis of alkene and alkyne.
Q. 13 (AB)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{HC} \div \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ $\xrightarrow{[\mathrm{O}]} \mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{COOH}$
Q. 14 (BC)
(B) Base is bulky so Hoffmann's alkens.
(C) Product of Hoffmann's reaction.
Q. 15 (ABCD)
(A)

(B)

Q. 34 (D)
Q. 35 (B)
($34 \& 35$)

Q. 36 (A) - (s); (B) $-\mathrm{q} ;$ (C) $-\mathrm{s} ;$ (D) $-\mathrm{s} ;(\mathrm{E})-\mathrm{s} ;(\mathrm{F})-\mathrm{q} ;(\mathrm{g})$ - p
(A) $\mathrm{CaC}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{CH} \equiv \mathrm{CH}$
(B) $\mathrm{Mg}_{2} \mathrm{C}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$

(E) $2 \mathrm{HCI}_{3}+6 \mathrm{Ag} \longrightarrow{ }_{\mathrm{CH}}^{\mathrm{CH}}+6 \mathrm{AgI}$
(F)

Br_{2}

$$
\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3} \text { But }-2-
$$

yne
Q. 37 (X) - (ii) ; (Y) - (i), (iv), (v) ; (Z) - (iii)
$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$; DU. $=\mathrm{O}$ May be either alcohol or ether .
Since oxidation will give ketone, hence $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ must be 2° alcohol
Y must be 1° alcohol since it oxidised \& gives aldehyde \& then acid
Z must be 3° alcohol; since it does not oxidised

2° alcohol
$\mathrm{Y}=$ must be 1° alcohol; $\mathrm{Z}=$ must be 3° alcohol
Q. 38 (A) - (r) ; (B) - (q, r) ; (C) - (p, r) ; (D) - (r, s)

Regioselectivity : \rightarrow Out of two positional isomers, one isomer is preferred.
Stereoselectivity : \rightarrow When one stereoisomer of the reactant has selected one stereoisomer of the products
Chemoselectivity : \rightarrow The reagent selects only one functional group /multiple bond/ substituents
Rearrangement : \rightarrow For increasing the stability carbocation undergo for rearrangement.

Q. 39 A

(A)

(B) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3} \xrightarrow{\mathrm{Na} / \mathrm{NH}_{3} /(\mathrm{liq} .)}$

(C)

(D) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow{\text { alc } \mathrm{KOH} / \Delta} \mathrm{CH}_{3}-\mathrm{C} \underset{\text { (2-butyne) }}{\mathrm{C}-\mathrm{CH}_{2}}$

NUMERICAL VALUE BASED

Q. 1 [3]

$\mathrm{Al}_{4} \mathrm{C}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{~A} \ell(\mathrm{OH})_{3}+3 \mathrm{CH}_{4}$ So, moles of CH_{4} formed $=3$ mole

Q. 2 [5]

Q. 3 [2]
Q. 4 [2]
Q. 5 [2]

Only two products contain chiral carbon atom. Hence no. of possible enantiomeric pairs are 2.

Q. 6 [3]

This indicates that loss of proton is not occurring is rate determining step so mechanism may either be E 1 or $\mathrm{E}_{1} \mathrm{C}_{\mathrm{B}}$.
Q. 7 [4]
(i) (A) gives monobromoalkane $(\mathrm{B}) \longrightarrow(\mathrm{A})$ is alkene
(ii)

Since $2 \mathrm{gm} \mathrm{Br}_{2}$ reacts completely with $=0.70 \mathrm{~g}$ of (A)
$\therefore 160 \mathrm{gm} \mathrm{Br} 2$ reacts completely with $=\frac{0.70 \times 160}{2}$
$=56 \mathrm{gm}$ of (A)
\therefore Molecular weight $=56$
$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}}=56$
(since compound is alkene)
$12 \mathrm{n}+2 \mathrm{n}=56$
$\mathrm{n}=4$
Q. 8 [1]

No. of meso Isomers - 1
No. of d and 1 Isomers - 0
Hence number of optical isomers $=1$
Q. 9 [4]
$C_{x} H_{y}\left(\right.$ organic compound, A) $\xrightarrow[(\text { monobromination })]{B r_{2}, h r o d u c t(\text { Enantiomeric }) ~}$
$A \xrightarrow{\mathrm{Br}_{2}, C L_{4}}$ no reaction.
$\mathrm{A} \xrightarrow{\mathrm{Br}_{2}, \mathrm{Fe}}$ mono Bromo derivative product

Q. 10 [3]

Only except cyclopentane alkane are not hydrogenated.
KVPY
PREVIOUS YEAR'S
Q. 1 (B)
Q. 2 (A,B)

Q. 3 (B)

Q. 4 (A)

Q. 5 (B)

Q. 6 (B)

Q. 7 (C)

Q. 8 (A)

Q. 9 (D)

Q. 10 (A)

Benzene

Q. 12 (D)

$$
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3} \xrightarrow[\text { Oxidi sing agent }]{\mathrm{KMO}_{4}} \mathrm{CH}_{3} \mathrm{COOH}
$$

Q. 13 (A)

Q. 14 (B)

This is example of Reductive Ozonolysis

Q. 15 (D)

$$
\begin{aligned}
& \mathrm{HO}-\mathrm{C}=\mathrm{O} \\
& \mathrm{H}-\mathrm{C}=\mathrm{O}
\end{aligned} \stackrel{(\mathrm{O})}{\leftarrow} \mathrm{HO}-\mathrm{C}=\mathrm{O}
$$

Oxalic acid
Q. 16 (B)

This is example of Dehydrohalogenation

$\mathrm{CH}_{3}-\stackrel{\mathrm{Br}}{\mathrm{CH}} \stackrel{-\mathrm{Br}}{\mathrm{CH}} \mathrm{C}-\mathrm{CH}_{3} \mathrm{Br} \longrightarrow \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}-\mathrm{CH}_{3}$

Q. 17 (C)

[Rxn is fridel crafts alkylatn]
Q. 18 (B)

Q. 19 (C)

(Trans alkene)
Q. 20 (C)

optically active
Q. 21 (A)
Q. 22 (C)

Q. 23 (C)

R
Given
Moles $=\frac{420 \times 10^{-3}}{210}$
Let Moles of R produced $=\frac{0.4 \times 420 \times 10^{-3}}{210}$
Wt. of R produced $=\frac{0.4 \times 420 \times 10^{-3}}{210} \times 106 \mathrm{~g}=84.8$
mg
Mole of Q produced $=\frac{0.4 \times 420 \times 10^{-3}}{210}$
Wt. of Q produced $=\frac{0.4 \times 420 \times 10^{-3}}{210} \times 136 \mathrm{~g}=108.8$
mg

JEE-MAINS

PREVIOUS YEAR'S
Q. 1 (2)

It is catalytic reforming (Aromatisation) of alkanes. n -heptane gives toluene in this process.
Q. 2 Q. 3

Q. 4 [7]

Q. 5 (2)

Q. 6 (2) (a) Alcoholic potassium hydroxide \rightarrow used for β elimination
(b) $\mathrm{Pd} / \mathrm{BaSO}_{4} \rightarrow$ Lindlar's catalyst
(c) BHC (Benzene hexachloride) \rightarrow Obtained by addition reactions
(d) Polyacetylene \rightarrow Electrodes in batteries
Q. 7 (1)

(A)

This is more stable due to secondary cation formation and formed with faster rate due to low activation energy.
Q. 8 (3) Alkane are very less reactive, tertiary hydrogen can oxidise to alcohal with KMnO_{4}.

2-methyl-butane
Q. 9 (4) Partially deactivated palladised charcoal $\left(\mathrm{H}_{2} / \mathrm{pd} / \mathrm{CaCO}_{3}\right)$ is lindlar catalyst.
Q. 10 (4)
Q. 11 (4)
Q. 12 (1)
Q. 13 (4)
Q. 14 (4)
Q. 15 (1)
Q. 16 (4)
Q. 17 (3)
Q. 18 (3)
Q. 19 (4)
Q. 20 (2)
Q. 21 (2)

JEE ADVANCED

 PREVIOUS YEAR’SQ. $7 \quad 1.62$
$\mathrm{Mg}_{2} \mathrm{C}_{3}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Mg}(\mathrm{OH})_{2}+\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CH}$

$(0.075 \times 0.4) \times$ $=0.01$ mole
The value of $x=162 \times 0.01=1.62 \mathrm{gm}$
Q. 83.2

$\left(0.04 \times \frac{80}{100}\right)=0.032 \mathrm{~mole}$
$60+32+8=100$
The value of $\mathrm{Y}=0.032 \times 100=3.2$
Q. 9 (B)

Q. 10 (D)

Practical Organic Chemistry

EXERCISES

ELEMENTARY

Q. 1	(2)
Q. 2	(1)
Q. 3	(3)
Q. 4	(1)
Q. 5	(4)
Q. 6	(4)
JEE-MAIN	
OBJECTIVE QUESTIONS	
Q. 1	(4) boiling point depends on H -bonding more than on di- pole moment so order is $\mathrm{w}>\mathrm{z}>\mathrm{x}>\mathrm{y}$.

Q. 2 (3)

Greater the mol. wt., greater will be boiling point hence I $>$ II > III $>$ IV.
Q. 3 (2) boiling point \propto molecular weight

$189^{\circ}>\left(156^{\circ}\right)>\left(132^{\circ}\right)>\left(85^{\circ}\right)$
Q. $4 \quad$ (4) boiling point \propto molecular weight.

Q. 5 (3)

Melting point depends on molecular wt. Greater the mol. wt. greater will be melting point.
Q. $6 \begin{aligned} & \text { (3) } \\ & \text { Melting point depends on symmetry so p- } \\ & \text { dibromobenzene has highest melting point. }\end{aligned}$
Q. 7 (2)

Melting point depends on H -bonding.

Q. 8 (3)

Parahydroxyphenol is more symmetrical with presence of intermolecular H-bond.
Q. 9 (4)

Phenyl group decreases the extent of H -bonding so solubility decreases.

Q. 10 (3)

Solubility depends on Hydrogen bonding and dipole moment. Greater the H -bonding and dipole moment, greater the solubility of molecule in water.
Q. 11 (1)

Solubility depend on extent of H -bonding. Lower the molecular wt. of alcohol greater the H -bonding and greater is the solubility.
Q. 12 (3)

Alcohol have H -bonding.
Q. 13 (2) aniline is base so form salt with HCl .
Q. 14 (3)
carboxylic acid form salt with NaHCO_{3}.
Q. 15 (1)

Lower alcohol are soluble in water.
Q. 16 (1) anisol does not form salt with NaOH .
Q. 17 (1) benzene is non-polar so cannot form salt with any of these reagents.
Q. 18 (4)

Terminal alkyne form white ppt. with Tollen's reagent.
Q. 19 (2) 3° alcohol gives instant turbidity with lucas reagent.
Q. 20 (1)
3° alcohol gives instant turbidity with lucas reagent.
Q. 21 (3)
aldehydes gives black or silver ppt. with tollen's reagent.
Q. 22 (3)

Q. 23 (1) amide gives smell of NH_{3} with conc. NaOH .
Q. 24 (1)

Secondary amine does not give +ve test with $\mathrm{CHCl}_{3} /$ KOH.
Q. 25 (1)

Glycosidic linkage is an acetal linkage as it connects two (hemiacetal) monosaccharide units.
Q. 26 (3)

Sucrose \longrightarrow Gulose +
Fructose
$+65^{\circ}+52.5^{\circ}$
-90°
the product mixture is overall laevorotatary

Q. 27 (2)

Hydrolysis of sucrose (dextrorotatory) into (+) glucose and (-) fructose gives overall levorotatory mixture of products, hence the process is known as "inversion of sugar".

Q. 28 (3)

α and β methyl glucosides are formed because glucose contains a ring structure and the reaction with $\mathrm{CH}_{3} \mathrm{OH}$ passes through a carbanion.
Q. 29 (2)

Aqueous solution of starch give blue colour with iodine solution.
Q. 30 (4)

I, II \& IV have 2 DU.
Q. 31 (3)

D is relative configuration, assigned to D glyceraldehyde.
Q. 32 (3)

Cellulose on hydrolysis yields β - D - glucose, because β - D - glucose units are polymerised in
cellulose.
Q. 33 (2)

Inverted sugar is $1: 1$ mixture of glucose and fructose.
Q. 34 (2)
$\alpha-\mathrm{D}$ glucose and β - D - glucose differ in configuration at $\mathrm{C}-1$.
Q. 35 (4)

In fructose total no. of chiral centres $=3$. Hence total no. of stereo isomers $=2^{3}=8$
Q. 36 (3)

Aldose sugars are always present in the form of hemiacetal.
Q. 37 (2)

Given carbohydrate contains six carbons and a aldehydic group, thus is an aldohexose.

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (C)

The lowest boiling point is due to intramolecular hydrogen bonding in ' C '.
All other have intermolecular H -bonding.

Q. 2 (D)

Boiling points depends on molecular weight.
Q. 3 (A)

Boiling point \propto molecular weight.
Q. 4 (B)

Boiling point \propto molecular weight.
Q. 5 (C)

Boiling point \propto molecular weight.
Q. 6 (A)

Melting point depends H -bonding which is dependent on surface area. Lower the surface area, more extent of the H -bonding.
Q. 7 (D)

Q. 8 (A)

Melting point depends on symmetry of molecule.
Q. 9 (B)

Melting point depends on symmetry of molecule.
Q. 10 (D)

D has highest molecular weight so have maximum melting point.
Q. 11 (C)

Q. 12 (B)
 character).

Q. 13 (B)

I and II have aromatic character, III has more polarity due to resonance.

Q. 14 (A)

Malonic acid is having smaller alkyl part so more soluble in water.
Q. 15 (D)

Pentan-1-ol has larger alkyl group which decreases H -bonding so least soluble in water.
Q. 16 (A)

Acids dissolves in NaHCO_{3} but phenols are insoluble.

Q. 17 (C)

Q. 18 (C)

II is soluble in NaHCO_{3}, I is soluble in NaOH and III is soluble in HCl .

Q. 19 (B)

Hydrazine $\left(\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}\right)$ do not have carbon so no CN^{-} formation occur with Na extract.
Q. 20 (A)

Fractional distillation is used to separate compounds which differ in boiling point.
Q. 21 (B)

For $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}} \mathrm{X}_{\mathrm{a}} \mathrm{N}_{\mathrm{b}} \mathrm{Du}=\frac{2 \mathrm{x}+2-\mathrm{y}-\mathrm{a}+\mathrm{b}}{2}$
\therefore for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \quad \mathrm{Du}=10=6 \mathrm{db}+4$ ring.

Q. 22 (B)

Compound have acidic H .

Q. 23 (A)

Q. 24 (D)

Q. 25 (B)

$$
\begin{aligned}
& \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \\
& \xrightarrow{\substack{\text { (ii) } \mathrm{Na} \text { metal }}} \text { No } \mathrm{H}_{2} \text { gas evolved } \Rightarrow \text { absence of acidic } \mathrm{H}
\end{aligned}
$$

Q. 26 (C)

Q. 27 (D)

It contains no $\mathrm{C}=\mathrm{C}$ bond, $\mathrm{C}=\mathrm{O}$ bond $\&$ acidic H .
Q. 28 (A)

Q. 30 (B)

Two compounds have alcoholic and phenolic group present.

Q. 31 (A)

Fructose on enolisation remains in the equilibrium with mannose and glucose hence reduces tollens reagent.
Fructose $\stackrel{\mathrm{OH}^{\ominus}}{\rightleftharpoons}$ Mannose \rightleftharpoons Glucose

Q. 32 (A)

Q. 33 (C)

Due to unsaturation pink colour of Baeyer's reagent decolourises

$\begin{array}{ll}\text { Q. } 34 & \text { (B) } \\ \text { Q. } 35 & \text { (D) } \\ \text { Q. } 36 & \text { (A) }\end{array}$

(A) Iodoform

(A)
Q. 29 (C)

Q. 37 (B)

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (ABC)

Q. 2 (ACD)

O do not form H-bond so has lower melting point.

$\mathrm{Cl}_{\text {has dipole moment so higher melting }}$ point.
Q. 3 (ABCD)

has polarity so solubility in water.
Q. 4 (B,D)

is more symmetrical with maximum dipole.
Q. 5 (C,D)
(A) Surface area decreases, solubility increases, so A is wrong order.
(B)

In it, due to the presence of intramolecular H - bonding the solubility is decrease, so B is wrong order.
(C)

$\mu=0$
$\mu \neq 0$

Like dissolve like so it is correct.
(D)

(II)
dipole moment of I is greater than II. Greater the dipole moment greater its solubility.
Q. 6 (AB)

Ammonical AgNO_{3} give white ppt. with first and sec-

Q. 7 (ABCD)

Self explanatory.
Q. 8 (ABC)

Presence of enolic/phenolic group.
Q. 9 (ACD)
$\mathrm{CH}_{3} \mathrm{CO}-\mathrm{R}$ group without electron withdrawing group at b position of $-\mathrm{C}=\mathrm{O}$ will give idoform test.
Q. 10 (ABCD)

(Sweet smelling
compound)
Q. 11 (ABCD)

It has 3 acidic H .

Q. 12 (BCD)

form test.

Q. 13 (B, C)

Glucose and fructose can reduce Tollen's reagent.
Q. 14 (A,B,C)

Glycerine, glycerol and propane-1,2,3-triol and of compound are purified by vacuum distillation. Therefore option (A), (B) and (C) are correct.
Q. 15 (A,B,C)

Factual

Q. 16 (A,B,C)

Kjeldahl's method is suitable for estimating nitrogen in those organic compounds in which nitrogen is linked to carbon and hydrogen.
The method is not used in the case of nitro, azo and azoxy compounds.
So option (A), (B) and (C) are correct.
(A,B,D)
Element
of atom
Relative numberSimplest ratio

C $\frac{6}{12}=.5 \quad \frac{.5}{.5}=1$
H $\frac{1}{1}=1$
$\frac{1}{.5}=2$
O $\frac{8}{16}=.5$
$\frac{.5}{.5}=1$
Therefore the empirical formula of molecule is $\mathrm{CH}_{2} \mathrm{O}$ and
molecular formula $=n\left(\mathrm{CH}_{2} \mathrm{O}\right) \mathrm{n}=1,2,3, \ldots$.
So option (A), (B) and (D) are correct.

Q. 18 (A,C)

Benzene and aniline are both liquids have their boiling points wide apart(about 40°).
So it may be separated by using distillation.
The mixture also speparated by dil HCl by dil HCl Therefore option (A) and (C) are correct.
Q. 19 (B,D)

The empirical formula of a compound is CH_{2}. The hydrocarbon series belong alkenes and cycloalkenes. So therefore option (B) and (D) are correct.

Q. 20 (A,D)

The desiccants used for absorbing cuter during Liebigs method are anhyd CaCl_{2} and $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$.
Therefore option (A) and (B) are correct.
Q. 21 (B,C)

If N and S both are present in the organic compound.
They may combine to form sodium thiocyanate.
$\mathrm{Na}+\mathrm{C}+\mathrm{S}+\mathrm{N} \xrightarrow{\Delta} \mathrm{NaSCN}$
Sod. Thiocynate
This when heated with ferrous sulphate produces a blood red colouration due to ferric thiocyanate

$$
\begin{array}{ll}
\mathrm{Fe}^{3+}+3 \mathrm{NaSCN} \rightarrow \quad & \begin{array}{l}
\mathrm{Fe}(\mathrm{SCN})_{3}+3 \mathrm{Na}^{+} \\
\\
\\
\text {Ferric thiocyanate } \\
\text { (Blood red colouration) }
\end{array}
\end{array}
$$

Q. 22 (C,D)

Absolute alcohol can be prepared form rectified spirit by

* azeotropic distillation with benzene
* keeping over fresh CaO for few hours and then distilling.
Therefore option (A) and (C) are correct.
Q. 23 (A)

Boiling point μ Extent of H -bonding.
Q. 24 (A)

Boiling point μ Surface area.
Q. 25 (D)

Boiling point μ Molecular weight.
Q. 26 (C)
$-\mathrm{NH}_{2}$ containing compound form salt with HCl .
Q. 27 (A)
-COOH group form salt with NaHCO_{3}.
Q. 28 (D)

Naphthalene does not form salt with $\mathrm{HCl}, \mathrm{NaHCO}_{3}$ and NaOH .
Q. 29 (C)
$R \& S$ are geometrical isomers which have different physical properties but on ozonolysis give same products.
Q. 30 (C)

R have lower boiling point because it vaporize earlier.
Q. 31 (C)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ have 3 types of chemically different H .
Q. 32 (A) $-\mathrm{p}, \mathrm{s}$; (B) - p, q; (C) $\mathrm{q}, \mathrm{r}, \mathrm{s}$; (D) r

Due to unsaturation brown colour of $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$ decolourises. Carboxylic acid gives CO_{2} gas with NaHCO_{3}. Aldehydes gives black or silver ppt. with tollen's reagent and terminal alkyne gives white ppt. with tollen's reagent. ${ }^{\text {' }} \mathrm{C}=\mathrm{O}$ group gives positive $2,4-$ DNP test.
Q. 33 (A) - p; (B) - s; (C) - q ; (D) - r

Benzene is non-polar, phenol has -OH group so slightly soluble, p-hydroxyphenol has $2-\mathrm{OH}$ group so

soluble in water.
Q. 34 (A) - r ; (B) - r ; (C) - p ; (D) - r

Melting point and boiling point depend on H -bonding in molecule while dipole moment depends on direction of electron flow.
Q. 35 (A) -q ; (B) -s ; (C) -r ; (D) -p
(A)
 with H -bond with water, so easily separated.
(B)
 is a acid which can be separated by weak base, NaHCO_{3}.
(C)
 is weak acid so can be separated
by NaOH .
(D)

is a base so can be separated by

HCl because it form salt.
Q. $36(A)-\mathrm{p}, \mathrm{q}, \mathrm{t} ;(\mathrm{B})-\mathrm{s} ;(\mathrm{C})-\mathrm{r}, \mathrm{t}$; (D) $\mathrm{q}, \mathrm{r}, \mathrm{s}$.
(A) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$ gives white ppt. with T.R and (I)
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{O}$ black or silver ppt. with tollen's reagent. (II)
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{O}$ group gives positive iodoform test, (II)
$⿳ \mathrm{C}=\mathrm{O}$ group gives positive 2,4 -DNP test.
(B) Phenol gives positive test with neutral FeCl_{3}.
(C) 2° alcohol gives turbidity in $5-10 \mathrm{~min}$. with lucas reagent, $\stackrel{\searrow}{\mathrm{C}}=\mathrm{O}$ group gives positive 2,4-DNP test.
(D) $\left(\begin{array}{c}\mathrm{CH}_{3}-\mathrm{CH} \\ \\ \mathrm{OH}\end{array}\right)$ group gives positive iodoform test, phenol gives positive test with neutral FeCl_{3} and alcohol give positive test with lucas reagent.
Q. 37 (A) - s; (B) $-\mathrm{t} ;(\mathrm{C})-\mathrm{p} ;(\mathrm{D})-\mathrm{q} ;(\mathrm{E})-\mathrm{r}$
Q. $38 \quad(\mathrm{~A})-\mathrm{s} ;(\mathrm{B})-\mathrm{t} ;(\mathrm{C})-\mathrm{p} ;(\mathrm{D})-\mathrm{q} ;(\mathrm{E})-\mathrm{r}$
Q. 39 (A) - r, s; (B) - p, q; (C) - p, q, r; (D) - p

NUMERICAL VALUE BASED

Q. 1 [0012]

$\mathrm{P}_{1}=756 \mathrm{~mm} \mathrm{Hg}$
$\mathrm{P}_{2}=760$

$$
\begin{array}{ll}
\mathrm{V}_{1}=48.6 \mathrm{ml} & \mathrm{~V}_{2}=? \\
\mathrm{~T}_{1}=300 \mathrm{~K} & \\
\mathrm{~T}_{2}=273 \mathrm{~K} &
\end{array}
$$

Applying general gas equation $\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
$\mathrm{V}_{2}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1} \mathrm{P}_{2}}=\frac{756 \times 48.6}{300} \times \frac{273}{760}=44 \mathrm{ml}$
Mass of organic compound $=0.45 \mathrm{~g}$

$$
\% \text { of } \mathrm{N}_{2}=\frac{28}{22400} \times \mathrm{V}_{2} \times \frac{1}{0.145} \times 100
$$

$$
=\frac{28}{22400} \times 44 \times \frac{1}{0.45} \times 100=12.22 \approx 12
$$

Q. 2 [5]

Alkene, Alkyne, phenol and aniline decolorise Br_{2} water solution.
Q. 3 [4]

Q. 4 [4]

Except aromatic aldehyde all other aldehyde react with Fehling's solution.
Q. 5 [2]

112 ml of H_{2} is obtained from 0.45 g
22400 ml of H_{2} is obtained from $\frac{0.45 \times 22400}{112}=90$
g
90 g compound give one mole H_{2} gas
i.e. 2 H obtained from 1 mole of compound.

Ans. No. of active $\mathrm{H}=2$
Q. 6 [81]

Compound Y is $\Rightarrow \mathrm{NaSCN}$
Molecular mass of $\mathrm{NaSCN}=23+32+12+14=81$

KVPY

PREVIOUS YEAR'S
Q. 1 (B)
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
$\left(\mathrm{C}_{2} \mathrm{H}_{60}\right)$
Alcohol
$\left(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2} \mathrm{O}\right)$

Carboxylic acid
Total wt $=60$
C $=24$ (40% carbon)
$\mathrm{O}=32$ (53.3\%)
$\mathrm{H}=4(6.7 \%)$

Q. 2 (B)

Aniline is purified by distillation method.

JEE-MAIN

PREVIOUS YEAR'S

Q. 1

Q. 2 (3)
Q. 3 [0.4]

$$
\text { retarding factor }=\frac{2}{5}=0.4
$$

Q. 4 (4)

For detection of NO_{2}^{-}the following test is used.
$\mathrm{NO}_{2}^{-}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{HNO}_{2}+\mathrm{CH}_{3} \mathrm{COO}-$

(Sulphanilic acid solution)

Q. 5 (2)

Kjeldahl method is not applicable to compounds containing nitrogen in nitrogroup, Azo groups and nitrogen present in the ring (e.g Pyridine) as nitrogen of these compounds does not change to Ammonium sulphate under these conditions
Q. 6 (3)

Match list :-
(a) Lassaigne's Test
(iii) N, S, P and Halogen

(b) $\mathrm{Cu}($ II) oxide	(i) Carbon
(c) AgNO_{3}	(iv) Halogen Specifically

(d) Sodium fusion extract given (ii) Sulphur black precipitate with acetic acid and lead acetate
$\left(\mathrm{CH}_{3} \mathrm{COOH} /\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{~Pb}\right)$
Option-(a)-(iii) ; (b)-(i) ; (c)-(iv) ; (d)-(ii)
Q. 7 (4)

In chromotography technique, the purification of a compound is independent of the physical state of the pure compound.
Q. 8 (3)
$\mathrm{R}_{\mathrm{f}}=$ retardation factor
Distance travelled by the substance from reference line(c.m)
$\mathrm{R}_{\mathrm{f}}=$ Distance travelled by the solvent from reference line (c.m)
Note : R_{f} value of different compounds are different.

Q. 9 [19]

In Duma's method of estimation of Nitrogen. 0.1840 gm of organic compound gave 30 mL of nitrogen which is collected at $287 \mathrm{~K} \& 758 \mathrm{~mm}$ of Hg .

Given;

Aqueous tension at $287 \mathrm{~K}=14 \mathrm{~mm}$ of Hg .
Hence actual pressure $=(758-14)$

$$
=744 \mathrm{~mm} \text { of } \mathrm{Hg} .
$$

Volume of nitrogen at STP $=\frac{273 \times 744 \times 30}{287 \times 760}$
$\mathrm{V}=27.935 \mathrm{~mL}$
$\because 22400 \mathrm{~mL}$ of N_{2} at STP weighs $=28 \mathrm{gm}$.
$\because 27.94 \mathrm{~mL}$ of N_{2} at STP weighs $=$

$$
\begin{aligned}
& \left(\frac{28}{22400} \times 27.94\right) \mathrm{gm} \\
& =0.0349 \mathrm{gm}
\end{aligned}
$$

Hence $\%$ of Nitrogen $=\left(\frac{0.0349}{0.1840} \times 100\right)$

$$
=18.97 \%
$$

Rond off. Answer $=19 \%$
Q. 10 (3)
Q. 11 (2)
Q. 12 (1)
Q. 13 (4)
Q. 14 (1)
Q. 15 (2)

Environmental Chemistry

EXERCISES

JEE-MAIN			
OBJECTIVE QUESTIONS		Q. 24	(D)
Q. 1	(C)	Q. 25	(A)
Q. 2	(A)	Q. 26	(D)
Q. 3	(B)	Q. 27	(A)
Q. 4	(C)	Q. 28	(B)
Q. 5	(C)	Q. 29	(A)
Q. 6	(C)	Q. 30	(C)
Q. 7	(B)	Q. 31	(A)
Q. 8	(C)	Q. 32	(A)
Q. 9	(D)	Q. 33	(A)
Q. 10	(C)	Q. 34	(A)
Q. 11	(C)	Q. 35	(A)
Q. 12	(A)	Q. 36	(D)
Q. 13	(C)	Q. 37	(A)
Q. 14	(D)	Q. 38	(B)
Q. 15	(B)	Q. 39	(D)
Q. 16	(C)	Q. 40	(A)
Q. 17	(B)	Q. 41	(A)
		Q. 42	(B)
Q. 18	(A)		
		Q. 43	(D)
Q. 19	(B)	Q. 44	(C)
Q. 20	(A)	Q. 45	(C)
Q. 21	(D)	Q. 46	(C)
Q. 22	(A)	Q. 47	(A)
$\begin{aligned} & \text { Q. } 23 \\ & 48 \end{aligned}$	(B)		

Q. 48	(D)	Q. 74	(4)
Q. 49	(C)	JEE-A	DVANCED
Q. 50	(A)	$\begin{aligned} & \text { MCQ/ } \\ & \text { Q. } 1 \end{aligned}$	OMPREHENSION/COLUMN MATCHING (ACD)
Q. 51	(A)	Q. 2	(CD)
Q. 52	(B)	Q. 3	(ABC)
Q. 53	(A)	Q. 4	(AC)
Q. 54	(A)	Q. 5	(AD)
Q. 55	(C)	Q. 6	(ABC)
Q. 56	(B)	Q. 7	(ABC)
Q. 57	(B)	Q. 8	(ABCD)
Q. 58	(C)	Q. 9	(D)
Q. 59	(C)	Q. 10	(D)
Q. 60	(A)	Q. 11	(D)
Q. 61	(A)	Q. 12	(D)
Q. 62	(D)	Q. 13	(D)
Q. 63	(C)	Q. 14	(D)
Q. 64	(B)	Q. 15	(A) pq (B) r (C) pt (D) s
Q. 65	(C)	Q. 16	(A) p (B) q (C) rst (D) pq
Q. 66	(B)	Q. 17	(A) r (B) s (C) $\mathrm{p}(\mathrm{D}) \mathrm{q}$
Q. 67	(C)	Q. 18	(3)
Q. 68	(A)	Q. 19	(4) DDT is a non-biodegradable pollutant.
Q. 69	(B)	Q. 20	(1)
Q. 70	(C)		ethyl isocyanate $\mathrm{CH}_{3}-\mathrm{N}=\mathrm{C}=\mathrm{O}$ (MIC gas) (Fact)
Q. 71	(C)	Q. 21	(3) Concentration of nitrate is maximum.
Q. 72 Q. 73	(1) (3)	Q. 22	(3) CH_{4} is not present in stratosphere.

Q. 23 (a) N_{2} Molecule has minimum role in the formatin of photochemical smog. While $\mathrm{CH}_{2}=\mathrm{O}, \mathrm{O}_{3}$ and NO has major role. When fossil fuels are burnt, a variety of pollutants are emitted. Two of them are hydrocarbons (unburnt) and NO. When these pollutants build upto high levels, a chain reaction occurs from their interaction with sunlight. The reactions involved in the formation of photochemical smog are as follows:
$\mathrm{NO}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{hv}} \mathrm{NO}(\mathrm{g})+\mathrm{O}(\mathrm{g})$
$\mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{O}_{3}(\mathrm{~g})$
$\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g}) \mathrm{O}_{2}(\mathrm{~g})$
O_{3} reats with unburnt hydrocarbons to produce chemicals such as formaldehyde, acrolein and PAN.
$3 \mathrm{CH}_{4}+2 \mathrm{O}_{3} \rightarrow 3 \mathrm{CH}_{2}=\mathrm{O}+3 \mathrm{H}_{2} \mathrm{O}$

Q. 24 (C)
SO_{2} gas causes stiffness of flower buds?

Q. 25 (A)

In ozone layer the wavelength of U.V radiation is 300 - 340 nm .

Q. 26 (A)

O_{3} is not common component of London and Los Angeles smog. It is present only in Los Angeles smog
Q. 27 (B)

Acid rain reacts with marble. Hence, the Taj Mahal which is made up of marble is discoloured.

Q. 28 (1)

The upper stratosphere conists of ozone $\left(\mathrm{O}_{3}\right)$, which protect us from harmful ultraviolet (UV) radiations coming from sun.
Correct option : (1)
Q. 29 Correct option : (3)
Q. 30 (4)

Excessive release of CO_{2} into the atmosphere results in global warming.

Q. 31 (4)

Nitrogen oxides and hydrocarbons (unburnt fuel) are primary pollutant that leads to photochemical smog.
Q. 32 (3)

It's a fact, the layer of atmosphere between 10 km to 50 km above sea level is called as stratosphere.
Q. 33 (3)

Troposphere is the lowest region of atmosphere bounded by Earth beneath and the stratosphere above where most \backslash of the clouds form and where life form exists.

Q. 34 (1)

Photochemical smog occurs in warm (sunlight) and has high concentration of oxidising agent there fore it is called photochemical smog/oxidising smog.

JEE-MAIN

PREVIOUS YEAR'S

Q. 1
Q. 2 (3)
Q. 3 (4)
Q. 4 (1)

The gas CH_{4} evolved due to anaerobic degradation of vegetation which causes global warming and caner.
Q. 5 (4)

Non-biodegradable wastes are generated by the thermal power plants which produces fly ash. Detergents which are biodegradable causes problem called eutrophication which kills animal life by deprieving it of oxygen.
Q. 6 (1)

Methane leads to both global warming \& photochemical smog.
Methane is generated in large amounts from paddy fields.
CO_{2} can be absorbed by photosynthesis, or by formation of acid rain etc., while no such activities are there for methane.
Hence methane is stronger global warming gas than CH_{4}.
Methane is not a part of reducing smog.

Q. 7 (3)

The green house gases are $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}_{\text {(vapour) }} \& \mathrm{CH}_{4}$.
Q. 8 (2)

In presence of ozone $\left(\mathrm{O}_{3}\right)$, oxidising smog gets increased during the day time because automobiles and factories produce main components of the photochemcial smog (oxidising smog) results from the action of sunlight on unsaturated hydrocarbon and nitrogen oxide.
Ozone is strong oxidising agent and can react with the unburnt hydrocarbons in the polluted air to produce chemicals.
Q. 9 (2)

Reducing or classical smog is the combination of smoke, fog and SO_{2}.
Q. 10 (4)

The process in which nutrient enriched water bodies support a dense plant population which kills animal life by depriving it of oxygen and results in subsequent loss of biodiversity is known as eutrophication.
Q. 11 (1)

Cation exchanger contains $-\mathrm{SO}_{3} \mathrm{H}$ or -COOH groups while anion exchanger contains basic groups like $-\mathrm{NH}_{2}$.
Q. 12 (4)
Q. 13 (2)
Q. 14 (3)
Q. 15 (1)
Q. 16 (4)
Q. 17 (4)
Q. 18 (3)
Q. 19 (3)
Q. 20 (3)
Q. 21 (2)
Q. 22 (4)

